Guanine-decorated graphene nanostructures for sensitive monitoring of neuron-specific enolase based on an enzyme-free electrocatalytic reaction.

نویسندگان

  • Guang-Zhou Li
  • Feng Tian
چکیده

A new and enzyme-free electrochemical immunoassay protocol was developed for the sensitive electronic monitoring of neuron-specific enolase (NSE) on a monoclonal mouse anti-human NSE antibody (mAb)-modified glassy carbon electrode, using guanine-decorated graphene nanostructures (GGN) as nanotags. To construct such an enzyme-free immunoassay format, guanine and polyclonal rabbit anti-human NSE antibody (pAb) were co-immobilized on the graphene nanostructures through the carbodiimide coupling. Based on a sandwich-type immunoassay mode, the assay was carried out in 0.1 M pH 7.4 PBS containing 5 μM Ru(bpy)3(2+) through the catalytic oxidation of Ru(bpy)3(2+) toward the guanine on the GGN. The presence of graphene nanostructures increased the immobilized amount of guanine, thus amplifying a detectable electronic signal. The covalent conjugation of guanine and pAb on the GGN resulted in a good repeatability and intermediate reproducibility down to 9.5%. Under optimal conditions, the dynamic concentration range of the developed immunoassay spanned from 0.005 to 80 ng mL(-1) NSE with a detection limit of 1.0 pg mL(-1) at the 3S(blank) level. In addition, the methodology was evaluated by assaying the spiking serum samples, and the relative standard deviation (RSD) between the electrochemical immunoassay and a commercialized enzyme-linked immunosorbent assay (ELISA) were 2.8-7.0%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Electrochemical Sensor Based on Nickel Oxides Nanoparticle/ Graphene Composites for Electrochemical Detection of Epinephrine

The combination of graphene and nickel oxide nanoparticles yields nanostructured electrochemical sensor formed a novel kind of structurally uniform and electrocatalytic activity material. In cyclic voltammetry studies, in the presence of epinephrine, nickel oxide / graphene  composite modified electrode shows a significantly higher current response for epinephrine oxidation. Based on differenti...

متن کامل

Determining The Diagnostic Value Of Neuron Specific Enolase Staining Of The Mucosal-submucosal Rectal Biopsies Obtained From Patients Suspected Of Hirschsprung’s Disease

Background and Objective: Diagnosis of Hirschsprung’s disease (HD) as the most common cause of neonatal intestinal obstruction is based on the presence of aganglionosis from seromuscular or full thickness biopsy. Due to the complication of full thickness or seromuscular rectal biopsy, mucosal-sub mucosal...

متن کامل

Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction.

An all-carbon hybrid, composed of coal-based nitrogen-doped carbon dots decorated on graphene, was prepared via hydrothermal treatment. The hybrid possesses comparable electrocatalytic activity, better durability and methanol tolerance than those of the commercial Pt-based electrocatalysts for oxygen reduction reaction, indicative of its great potential in fuel cells.

متن کامل

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

Multifunctional graphene-based nanostructures for efficient electrocatalytic reduction of oxygen

Graphene derivatives have been used extensively as a functional support for nanoparticle catalysts in diverse applications, in particular, oxygen reduction reactions (ORR) at fuel cell cathodes. This review summarizes recent progress in this area of research, where the catalytic performance is evaluated within the context of stabilization of metal nanoparticles against sintering/aggregation and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2013